Bivariate Polynomials Modulo Composites and Their Applications

Dan Boneh and Henry Corrigan-Gibbs Stanford University

ASIACRYPT — 8 December 2014

Let N = pq be an RSA modulus of unknown factorization.

Let N = pq be an RSA modulus of unknown factorization.

i.e., p and q are large distinct random primes

Let N = pq be an RSA modulus of unknown factorization.

Let N = pq be an RSA modulus of unknown factorization.

Question

Given a fixed polynomial $f \in \mathbb{Z}[x]$ and $c \leftarrow_R \mathbb{Z}_N$

How hard is it to solve:

 $f(x) = c \mod N ?$

When $f(x) = x^2$, solving

 $x^2 = c \mod N$

is as hard as factoring $N_{\rm \ [Rabin \ '79]}$

When $f(x) = x^2$, solving

 $x^2 = c \mod N$

is as hard as factoring $N_{\rm \ [Rabin \ '79]}$

When $f(x) = x^3$, solving $x^3 = c \mod N$

is the RSA problem [Rivest-Shamir-Adleman '78]

When $f(x) = x^2$, solving

 $x^2 = c \mod N$

is as hard as factoring $N_{\rm \ [Rabin \ '79]}$

When $f(x) = x^3$, solving

$$x^3 = c \mod N$$

is the RSA problem [Rivest-Shamir-Adleman '78]

When $f \in \mathbb{Z}_N[x]$ is random (of fixed degree), solving: $f(x) = 0 \mod N$

is as hard as factoring N $_{\rm [Schwenk-Eisfeld '96]}$

A Natural Extension: Bivariates

Question

Fix a *bivariate* polynomial $f \in \mathbb{Z}[x, y]$, choose $c \leftarrow_R \mathbb{Z}_N$ For which f is it hard to solve:

 $f(x,y) = c \mod N \quad ?$

A Natural Extension: Bivariates

Question

Fix a *bivariate* polynomial $f \in \mathbb{Z}[x, y]$, choose $c \leftarrow_R \mathbb{Z}_N$ For which f is it hard to solve:

 $f(x,y) = c \mod N \quad ?$

When does $f(x, y) \mod N$ have interesting cryptographic properties?

A Natural Extension: Bivariates

Question

Fix a *bivariate* polynomial $f \in \mathbb{Z}[x, y]$, choose $c \leftarrow_R \mathbb{Z}_N$ For which f is it hard to solve:

 $f(x,y) = c \mod N \quad ?$

When does $f(x, y) \mod N$ have interesting cryptographic properties?

From the **discrete log problem**...

$$M=g^m$$

From the **discrete log problem**...

$$M = g^m$$

... we get a commitment scheme:

$$C(m;r) = g^m h^r$$

[Pedersen '91]

From the **discrete log problem**...

$$M = g^m$$

... we get a commitment scheme:

$$C(m;r) = g^m h^r$$

[Pedersen '91]

From the RSA problem...

$$M = m^3 \mod N$$

From the **discrete log problem**...

$$M = g^m$$

... we get a commitment scheme:

$$C(m;r) = g^m h^r$$

[Pedersen '91]

From the RSA problem...

$$M = m^3 \mod N$$

... do we get a commitment scheme?

$$C(m;r) = m^3 + 2r^3 \bmod N$$

From the **discrete log problem**...

$$M = g^m$$

... we get a commitment scheme:

$$C(m;r) = g^m h^r$$

[Pedersen '91]

From the RSA problem...

$$M = m^3 \mod N$$

... do we get a
Or maybe
$$m^4$$
? m^5 ?
 $C(m;r) = m^3 + 2r^3 \mod N$

From the **discrete log problem**...

$$M = g^m$$

... we get a commitment scheme:

$$C(m;r) = g^m h^r$$

[Pedersen '91]

From the RSA problem...

$$M = m^3 \mod N$$

... do we get a commitment scheme?

$$C(m;r) = m^3 + 2r^3 \bmod N$$

From the **discrete log problem**...

$$M = g^m$$

... we get a commitment scheme:

$$C(m;r) = g^m h^r$$

[Pedersen '91]

From the RSA problem...

$$M = m^3 \mod N$$

... do we get a commitment scheme?

$$C(m;r) = n^3 - 2r^3 \mod N$$

Overview

Motivation

Classifying Polynomials One way functions Second preimage resistance Collision Resistance

Applications

Conclusion

Classifying Polynomials

Useful cryptographic properties of $f(x, y) \mod N$:

- one-wayness
- second preimage resistance
- collision resistance

Classifying Polynomials

Useful cryptographic properties of $f(x, y) \mod N$:

- one-wayness
- second preimage resistance
- collision resistance

Question

Which polynomials $f \in \mathbb{Z}[x, y]$ define functions mod N with these properties?

To understand properties of $c \leftarrow f(x, y) \mod N$,

look at the properties of $f(x, y) = c \in \mathbb{Q}$.

Fact

If it's easy to find rational solutions to

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

$$f(x,y) = c \mod N.$$

Fact

If it's easy to find rational sc

Find solution and reduce it mod N.

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

$$f(x,y) = c \mod N.$$

Fact

If it's easy to find rational solutions to

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

$$f(x,y) = c \mod N.$$

Fact

If it's easy to find rational solutions to

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

$$f(x,y) = c \mod N.$$

Question

Is this the only way to find solutions mod N?

Fact

If it's easy to find rational solutions to

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

f(x, y) Can compute +,-,*,/. Not \sqrt{x} .

Question

Is this the only way to find solutions $\mod N$:

Fact

If it's easy to find rational solutions to

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

$$f(x,y) = c \mod N.$$

Question

Is this the only way to find solutions mod N?

Fact

If it's easy to find rational solutions to

$$f(x,y) = c \qquad \in \mathbb{Q}$$

then, for random RSA moduli N, it's easy find solutions to

$$f(x,y) = c \mod N.$$

Question

Is this the only way to find solutions mod N?

More generally: Are rational properties of f sufficient to get cryptographic properties mod N?

Example

You want this to be a OWF. Is it?

$$f(x,y) = x^2 - 5y^2 + 3xy \mod N$$

Example

You want this to be a OWF. Is it?

$$f(x,y) = x^2 - 5y^2 + 3xy \mod N$$

No! The curve f(x,y) = c is of genus zero over \mathbb{Q} , so can efficiently invert the OWF. [Pollard-Schnorr '87]

Example

You want this to be a OWF. Is it?

$$f(x,y) = x^2 - 5y^2 + 3xy \mod N$$

No! The curve f(x,y) = c is of genus zero over \mathbb{Q} , so can efficiently invert the OWF. [Pollard-Schnorr '87]

OSS'84 sigs (broken) relied on the hardness of a related problem.

Classify polynomials $f \in \mathbb{Z}[x, y]$ according to the *genus* of f(x, y) - c = 0 for most $c \in \mathbb{Z}_N$

Classify polynomials $f \in \mathbb{Z}[x, y]$ according to the *genus* of f(x, y) - c = 0 for most $c \in \mathbb{Z}_N$

Genus	Туре	Easy to invert mod N?
0	"rational"	Yes
1	"elliptic"	?
≥ 2		?

Classify polynomials $f \in \mathbb{Z}[x, y]$ according to the *genus* of f(x, y) - c = 0 for most $c \in \mathbb{Z}_N$

Genus	Туре	Easy to invert mod N?
0	"rational"	Yes
1	"elliptic"	?
≥ 2		?

Necessary Condition: For *f* to give rise to OWF, curve f(x, y) - c = 0 must have genus > 0 for almost all *c*.

Second Preimage Resistance

Definition: Given a point $(x, y) \leftarrow_R \mathbb{Z}_N^2$, should be hard to find a *second* point (x', y') such that:

 $f(x,y) = f(x',y') \bmod N$
Second Preimage Resistance

Definition: Given a point $(x, y) \leftarrow_R \mathbb{Z}_N^2$, should be hard to find a *second* point (x', y') such that:

$$f(x,y) = f(x',y') \bmod N$$

Breaking SPR is only as hard as finding a *second* rational point on the curve f(x, y) = c.

Second Preimage Resistance

Definition: Given a point $(x, y) \leftarrow_R \mathbb{Z}_N^2$, should be hard to find a *second* point (x', y') such that:

$$f(x,y) = f(x',y') \bmod N$$

Breaking SPR is only as hard as finding a *second* rational point on the curve f(x, y) = c.

Necessary Condition: For *f* to be SPR, curve f(x, y) = c must have no non-trivial rational mapping $(x, y) \mapsto (x', y')$ for almost all *c*.

Second Preimage Resistance

Definition: Given a point $(x, y) \leftarrow_R \mathbb{Z}_N^2$, should be hard to find a *second* point (x', y') such that:

 $f(x,y) = f(x',y') \bmod N$

Breaking SPR is o point on the curve f(w)

Details are in the paper

second rational

Necessary Condition: For *f* to be SPR, curve f(x, y) = c must have no non-trivial rational mapping $(x, y) \mapsto (x', y')$ for almost all *c*.

Definition: *f* is *collision resistant* if it is computationally hard to find $(x, y) \neq (x', y') \in \mathbb{Z}_N^2$ such that

$$f(x,y) = f(x',y') \mod N.$$

Definition: *f* is *collision resistant* if it is computationally hard to find $(x, y) \neq (x', y') \in \mathbb{Z}_N^2$ such that

$$f(x,y) = f(x',y') \mod N.$$

Definition: A function $f : \mathbb{Q} \times \mathbb{Q} \mapsto \mathbb{Q}$ is *injective* if

$$f(x,y) = f(x',y') \qquad \Longrightarrow \qquad (x,y) = (x',y').$$

Factf(x,y) is NOTan injective mapf(x,y) is NOT $CR \mod N$

Factf(x,y) is NOTan injective mapf(x,y) is NOT $CR \mod N$

Question

Does there exist a low-degree poly f(x, y) that induces an *injective* map $\mathbb{Q} \times \mathbb{Q} \mapsto \mathbb{Q}$?

Question

Does there exist a low-degree poly f(x, y) that induces an *injective* map $\mathbb{Q} \times \mathbb{Q} \mapsto \mathbb{Q}$?

This is an open problem in number theory.

Question

Does there exist a low-degree poly f(x, y) that induces an *injective* map $\mathbb{Q} \times \mathbb{Q} \mapsto \mathbb{Q}$?

This is an open problem in number theory.

But a 15-year-old conjecture says that $f_{\mathsf{Zag}}(x,y) = x^7 + 3y^7$ is injective over $\mathbb{Q} \times \mathbb{Q}$

[Zagier, as reported by Poonen 2009]

Question

Does there exist a low-degree poly f(x, y) that induces an *injective* map $\mathbb{Q} \times \mathbb{Q} \mapsto \mathbb{Q}$?

This is an open problem in number theory.

But a 15-year-old conjecture says that $f_{\mathsf{Zag}}(x, y) = x^7 + 3y^7$ is injective over $\mathbb{Q} \times \mathbb{Q}$

 $x^7 + 3y^7$ is the **actual** polynomial, not a toy example.

Conjecture [Zagier]

The following is an injective function mapping $\mathbb{Q}^2 \mapsto \mathbb{Q}$:

$$f_{\mathsf{Zag}}(x,y) = x^7 + 3y^7$$

Conjecture [Zagier]

The following is an injective function mapping $\mathbb{Q}^2 \mapsto \mathbb{Q}$:

$$f_{\mathsf{Zag}}(x,y) = x^7 + 3y^7$$

Remark

By Merkle-Damgård:

$$f_{\mathsf{Zag}}(x,y)$$
 injective $\implies g(x,y,z) = x^7 + 3(y^7 + 3z^7)^7$
injective

Conjecture [Zagier]

The following is an injective function mapping $\mathbb{Q}^2 \mapsto \mathbb{Q}$:

$$f_{\mathsf{Zag}}(x,y) = x^7 + 3y^7$$

Remark

By Merkle-Damgård:

$$f_{\mathsf{Zag}}(x,y)$$
 injective $\implies g(x,y,z) = x^7 + 3(y^7 + 3z^7)^7$
injective

We get injective maps on $\mathbb{Q}^4, \mathbb{Q}^5, \dots$ for free!

Since the only apparent way to find collisions in $f \mod N$ is to find \mathbb{Q} collisions...

Since the only apparent way to find collisions in $f \mod N$ is to find \mathbb{Q} collisions...

and since Zagier conjectures that f_{Zag} is injective (i.e., has no collisions) over \mathbb{Q}^2 ...

Since the only apparent way to find collisions in $f \mod N$ is to find \mathbb{Q} collisions...

and since Zagier conjectures that f_{Zag} is injective (i.e., has no collisions) over \mathbb{Q}^2 ...

Assumption

The function $f_{Zag}(x, y) = x^7 + 3y^7 \mod N$ is CR.

Since the only apparent way to find collisions in $f \mod N$ is to find \mathbb{Q} collisions...

and since Zagier conjectures that f_{Zag} is injective (i.e., has no collisions) over \mathbb{Q}^2 ...

Assumption

The function
$$f_{Zag}(x, y) = x^7 + 3y^7 \mod N$$
 is CR.

Now, what can we do with this assumption?

Motivation

Classifying Polynomials

Applications

Conclusion

One of the most common tools in crypto protocols

One of the most common tools in crypto protocols

Commit(m) → (c, r). Generate a commitment c to m using randomness r. Open(c, m, r) → {0, 1}. Test whether (m, r) is a valid opening of c.

One of the most common tools in crypto protocols

Commit(m) → (c, r). Generate a commitment c to m using randomness r. Open(c, m, r) → {0, 1}. Test whether (m, r) is a valid opening of c.

Hiding. For any two messages m and m':

 $\mathsf{Commit}(m,r) \approx_s \mathsf{Commit}(m',r')$

Binding. Cannot open a commitment two different ways.

Public params: RSA modulus N s.t. $gcd(\phi(N), 7) = 1$

$$\begin{array}{l} \mathsf{Commit}(m) \to (c,r) \\ \mathsf{Pick} \ r \leftarrow_R \mathbb{Z}_N. \\ \mathsf{Return} \ f_{\mathsf{Zag}}(m,r) = m^7 + 3r^7 \ \mathrm{mod} \ N. \\ \mathsf{Open}(c,m,r) \to \{0,1\} \\ \mathsf{Check} \ \mathsf{that} \ c \stackrel{?}{=} f_{\mathsf{Zag}}(m,r) \ \mathrm{mod} \ N. \end{array}$$

Public params: RSA modulus N s.t. gc

Efficient! Only a few mults.

$$\begin{array}{l} \mathsf{Commit}(m) \to (c,r) \\ \mathsf{Pick} \ r \leftarrow_R \mathbb{Z}_N. \\ \mathsf{Return} \ f_{\mathsf{Zag}}(m,r) = m^7 + 3r^7 \ \mathrm{mod} \ N. \\ \mathsf{Open}(c,m,r) \to \{0,1\} \\ \mathsf{Check} \ \mathsf{that} \ c \stackrel{?}{=} f_{\mathsf{Zag}}(m,r) \ \mathrm{mod} \ N. \end{array}$$

Public params: RSA modulus N s.t. $gcd(\phi(N), 7) = 1$

$$\begin{array}{l} \mathsf{Commit}(m) \to (c,r) \\ \mathsf{Pick} \ r \leftarrow_R \mathbb{Z}_N. \\ \mathsf{Return} \ f_{\mathsf{Zag}}(m,r) = m^7 + 3r^7 \ \mathrm{mod} \ N. \\ \mathsf{Open}(c,m,r) \to \{0,1\} \\ \mathsf{Check} \ \mathsf{that} \ c \stackrel{?}{=} f_{\mathsf{Zag}}(m,r) \ \mathrm{mod} \ N. \end{array}$$

Public params: RSA modulus N s.t. $gcd(\phi(N), 7) = 1$

$$\begin{array}{l} \mathsf{Commit}(m) \to (c,r) \\ \mathsf{Pick} \ r \leftarrow_R \mathbb{Z}_N. \\ \mathsf{Return} \ f_{\mathsf{Zag}}(m,r) = m^7 + 3r^7 \ \mathrm{mod} \ N. \\ \mathsf{Open}(c,m,r) \to \{0,1\} \\ \mathsf{Check} \ \mathsf{that} \ c \stackrel{?}{=} f_{\mathsf{Zag}}(m,r) \ \mathrm{mod} \ N. \end{array}$$

Security

Public params: RSA modulus N s.t. $gcd(\phi(N), 7) = 1$

$$\begin{array}{l} \mathsf{Commit}(m) \to (c,r) \\ \mathsf{Pick} \ r \leftarrow_R \mathbb{Z}_N. \\ \mathsf{Return} \ f_{\mathsf{Zag}}(m,r) = m^7 + 3r^7 \ \mathrm{mod} \ N. \\ \mathsf{Open}(c,m,r) \to \{0,1\} \\ \mathsf{Check} \ \mathsf{that} \ c \stackrel{?}{=} f_{\mathsf{Zag}}(m,r) \ \mathrm{mod} \ N. \end{array}$$

Security

► Hiding: Follows because m is blinded with random element 3r⁷

Public params: RSA modulus N s.t. $gcd(\phi(N), 7) = 1$

$$\begin{array}{l} \mathsf{Commit}(m) \to (c,r) \\ \mathsf{Pick} \ r \leftarrow_R \mathbb{Z}_N. \\ \mathsf{Return} \ f_{\mathsf{Zag}}(m,r) = m^7 + 3r^7 \ \mathrm{mod} \ N. \\ \mathsf{Open}(c,m,r) \to \{0,1\} \\ \mathsf{Check} \ \mathsf{that} \ c \stackrel{?}{=} f_{\mathsf{Zag}}(m,r) \ \mathrm{mod} \ N. \end{array}$$

Security

- ► Hiding: Follows because m is blinded with random element 3r⁷
- Binding: Violating the binding property implies finding a collision in f_{Zag} mod N

Commit(m), Commit(r), Commit(c)

can prove in *succinct* ZK that $c = m^7 + 3r^7 \mod N$.

Commit(m), Commit(r), Commit(c)

can prove in *succinct* ZK that $c = m^7 + 3r^7 \mod N$.

- \rightarrow Prove that committed values (c, m, r) are themselves the opening of a commitment
- → Uses standard D.log ZKPoK techniques

Commit(m), Commit(r), Commit(c)

can prove in *succinct* ZK that $c = m^7 + 3r^7 \mod N$.

- \rightarrow Prove that committed values (c,m,r) are themselves the opening of a commitment
- → Uses standard D.log ZKPoK techniques

WHY WOULD YOU EVER WANT TO DO THAT?!

 $\mathsf{Commit}(m), \mathsf{Commit}(r), \mathsf{Commit}(c)$

can prove in *succinct* ZK that $c = m^7 + 3r^7 \mod N$.

- \rightarrow Prove that committed values (c,m,r) are themselves the opening of a commitment
- → Uses standard D.log ZKPoK techniques

WHY WOULD YOU EVER WANT TO DO THAT?! Useful for:

- ► short anonymous Bitcoins, [Miers et al. 2013, Ben-Sasson et al, 2014]
- ► anonymous authentication, [Benaloh-De Mare '93, Barić-Pfitz. '97, C-L 2002]
- ► set membership proofs, [Camenisch-Chaabouni-Shelat 2008]
- ► etc.

Chameleon Hash

[Gennaro-Halevi-Rabin '99, Krawczyk-Rabin 2000, Bellare-Ristov 2008]

Definition: a hash function H(m, r) such that

- ► without "trapdoor," it's hard to find collisions in *H*
- given (h, m), can use the "trapdoor," to find r s.t.

h = H(m, r)

• for any m, m' and for random r, r':

 $H(m,r) \approx_s H(m',r')$

Chameleon Hash

[Gennaro-Halevi-Rabin '99, Krawczyk-Rabin 2000, Bellare-Ristov 2008]

Definition: a hash function H(m, r) such that

- ► without "trapdoor," it's hard to find collisions in *H*
- given (h, m), can use the "trapdoor," to find r s.t.

h = H(m, r)

• for any m, m' and for random r, r':

$$H(m,r) \approx_s H(m',r')$$

Construction

- ► Hash function is $H(m,r) = m^7 + 3r^7 \mod N$
- "Trapdoor" is the factorization of \boldsymbol{N}
Other Applications

Others...

- ► "Accumulator" [Merkle '89]
- ► Signature scheme [Goldwasser-Micali-Rivest '88]

Other Applications

Others...

- ► "Accumulator" [Merkle '89]
- ► Signature scheme [Goldwasser-Micali-Rivest '88]
- [Your application here]

Motivation

Classifying Polynomials

Applications

Conclusion

We reason about properties of $f(x, y) \mod N$ by looking at the properties of f(x, y) = c over the rationals.

Crypto Property Algebraic Property

We reason about properties of $f(x, y) \mod N$ by looking at the properties of f(x, y) = c over the rationals.

Crypto Property	Algebraic Property
One-wayness	genus $g > 0$

We reason about properties of $f(x, y) \mod N$ by looking at the properties of f(x, y) = c over the rationals.

Crypto Property	Algebraic Property
One-wayness	genus $g > 0$
2nd-preimage resistant	No ${\mathbb Q}$ maps

Recap

We reason about properties of $f(x, y) \mod N$ by looking at the properties of f(x, y) = c over the rationals.

Crypto Property	Algebraic Property
One-wayness	genus $g > 0$
2nd-preimage resistant	No ${\mathbb Q}$ maps
Collision-resistant	Injective on $\mathbb{Q} \times \mathbb{Q}$

► Can we prove in a generic ring model that $x^7 + 3y^7$ is collision resistant mod N? [Aggarwal-Maurer 2009]

- ► Can we prove in a generic ring model that $x^7 + 3y^7$ is collision resistant mod N? [Aggarwal-Maurer 2009]
- What other applications are there for bivariates mod N?

- ► Can we prove in a generic ring model that $x^7 + 3y^7$ is collision resistant mod N? [Aggarwal-Maurer 2009]
- What other applications are there for bivariates mod N?

- ► Can we prove in a generic ring model that $x^7 + 3y^7$ is collision resistant mod N? [Aggarwal-Maurer 2009]
- What other applications are there for bivariates mod N?

Thanks to Antoine Joux, Bjorn Poonen, Don Zagier, Joe Zimmerman, and Steven Galbraith for helpful comments and suggestions.